Parabolic Antenna - Related Theories - Shaanxi Probecom Microwave Technology Co., Ltd. window.addEventListener('DOMContentLoaded', function(event){ document.querySelectorAll("a[href*='.pdf']").forEach(function(e){ e.addEventListener('click', function(){ gtag('event', 'conversion', {'send_to': 'AW-989329636/q8bmCO-rxY4DEOTx39cD'}); }); }); });
Technical Support
SEARCH
Online consulting:           sales@probecom.cn , support@probecom.cn    

Related Theories

Parabolic Antenna

2017-05-31

A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. The most common form is shaped like a dish and is popularly called a dish antenna or parabolic dish. The main advantage of a parabolic antenna is that it has high directivity. It functions similarly to a searchlight or flashlight reflector to direct the radio waves in a narrow beam, or receive radio waves from one particular direction only. Parabolic antennas have some of the highest gains, that is, they can produce the narrowest beamwidths, of any antenna type. In order to achieve narrow beamwidths, the parabolic reflector must be much larger than the wavelength of the radio waves used, so parabolic antennas are used in the high frequency part of the radio spectrum, at UHF and microwave (SHF) frequencies, at which the wavelengths are small enough that conveniently-sized reflectors can be used.


Parabolic antennas are used as high-gain antennas for point-to-point communications, in applications such as microwave relay links that carry telephone and television signals between nearby cities, wireless WAN/LAN links for data communications, satellite communications and spacecraft communication antennas. They are also used in radio telescopes.


The other large use of parabolic antennas is for radar antennas, in which there is a need to transmit a narrow beam of radio waves to locate objects like ships, airplanes, and guided missiles.[2] With the advent of home satellite television receivers, parabolic antennas have become a common feature of the landscapes of modern countries.


The parabolic antenna was invented by German physicist Heinrich Hertz during his discovery of radio waves in 1887. He used cylindrical parabolic reflectors with spark-excited dipole antennas at their focus for both transmitting and receiving during his historic experiments.


Design
The operating principle of a parabolic antenna is that a point source of radio waves at the focal point in front of a paraboloidal reflector of conductive material will be reflected into a collimated plane wave beam along the axis of the reflector. Conversely, an incoming plane wave parallel to the axis will be focused to a point at the focal point.


A typical parabolic antenna consists of a metal parabolic reflector with a small feed antenna suspended in front of the reflector at its focus, pointed back toward the reflector. The reflector is a metallic surface formed into a paraboloid of revolution and usually truncated in a circular rim that forms the diameter of the antenna. In a transmitting antenna, radio frequency current from a transmitter is supplied through a transmission line cable to the feed antenna, which converts it into radio waves. The radio waves are emitted back toward the dish by the feed antenna and reflect off the dish into a parallel beam. In a receiving antenna the incoming radio waves bounce off the dish and are focused to a point at the feed antenna, which converts them to electric currents which travel through a transmission line to the radio receiver.


Parabolic reflector

Wire grid-type parabolic antenna used for MMDS data link at a frequency of 2.5-2.7 GHz. It is fed by a vertical dipole under the small aluminum reflector on the boom. It radiates vertically polarized microwaves.
The reflector can be of sheet metal, metal screen, or wire grill construction, and it can be either a circular "dish" or various other shapes to create different beam shapes. A metal screen reflects radio waves as well as a solid metal surface as long as the holes are smaller than one-tenth of a wavelength, so screen reflectors are often used to reduce weight and wind loads on the dish. To achieve the maximum gain, it is necessary that the shape of the dish be accurate within a small fraction of a wavelength, to ensure the waves from different parts of the antenna arrive at the focus in phase. Large dishes often require a supporting truss structure behind them to provide the required stiffness.

A reflector made of a grill of parallel wires or bars oriented in one direction acts as a polarizing filter as well as a reflector. It only reflects linearly polarized radio waves, with the electric field parallel to the grill elements. This type is often used in radar antennas. Combined with a linearly polarized feed horn, it helps filter out noise in the receiver and reduces false returns.

Since a shiny metal parabolic reflector can also focus the sun's rays, and most dishes could concentrate enough solar energy on the feed structure to severely overheat it if they happened to be pointed at the sun, solid reflectors are always given a coat of flat paint.


Feed antenna
The feed antenna at the reflector's focus is typically a low-gain type such as a half-wave dipole or more often a small horn antenna called a feed horn. In more complex designs, such as the Cassegrain and Gregorian, a secondary reflector is used to direct the energy into the parabolic reflector from a feed antenna located away from the primary focal point. The feed antenna is connected to the associated radio-frequency (RF) transmitting or receiving equipment by means of a coaxial cable transmission line or waveguide.

An advantage of parabolic antennas is that most of the structure of the antenna (all of it except the feed antenna) is nonresonant, so it can function over a wide range of frequencies, that is a wide bandwidth. All that is necessary to change the frequency of operation is to replace the feed antenna with one that works at the new frequency. Some parabolic antennas transmit or receive at multiple frequencies by having several feed antennas mounted at the focal point, close together.


History

The first parabolic antenna, built by Heinrich Hertz in 1888.
The idea of using parabolic reflectors for radio antennas was taken from optics, where the power of a parabolic mirror to focus light into a beam has been known since classical antiquity. The designs of some specific types of parabolic antenna, such as the Cassegrain and Gregorian, come from similarly named analogous types of reflecting telescope, which were invented by astronomers during the 15th century.[8][2]

German physicist Heinrich Hertz constructed the world's first parabolic reflector antenna in 1888.[2] The antenna was a cylindrical parabolic reflector made of zinc sheet metal supported by a wooden frame, and had a spark-gap excited dipole as a feed antenna along the focal line. Its aperture was 2 meters high by 1.2 meters wide, with a focal length of 0.12 meters, and was used at an operating frequency of about 450 MHz. With two such antennas, one used for transmitting and the other for receiving, Hertz demonstrated the existence of radio waves which had been predicted by James Clerk Maxwell some 22 years earlier.[9] However, the early development of radio was limited to lower frequencies at which parabolic antennas were unsuitable, and they were not widely used until after World War 2, when microwave frequencies began to be exploited.

Italian radio pioneer Guglielmo Marconi used a parabolic reflector during the 1930s in investigations of UHF transmission from his boat in the Mediterranean.[8] In 1931 a 1.7 GHz microwave relay telephone link across the English Channel using 10 ft. (3 meter) diameter dishes was demonstrated.[8] The first large parabolic antenna, a 9 m dish, was built in 1937 by pioneering radio astronomer Grote Reber in his backyard,[2] and the sky survey he did with it was one of the events that founded the field of radio astronomy.[8]

The development of radar during World War II provided a great impetus to parabolic antenna research, and saw the evolution of shaped-beam antennas, in which the curve of the reflector is different in the vertical and horizontal directions, tailored to produce a beam with a particular shape.[8] After the war very large parabolic dishes were built as radio telescopes. The 100 meter Green Bank Radio Telescope at Green Bank, West Virginia, the first version of which was completed in 1962, is still the world's largest fully steerable parabolic dish.

During the 1960s dish antennas became widely used in terrestrial microwave relay communication networks, which carried telephone calls and television programs across continents.[8] The first parabolic antenna used for satellite communications was constructed in 1962 at Goonhilly in Cornwall, England to communicate with the Telstar satellite. The Cassegrain antenna was developed in Japan in 1963 by NTT, KDDI and Mitsubishi Electric.[10] The advent in the 1970s of computer design tools such as NEC capable of calculating the radiation pattern of parabolic antennas has led to the development of sophisticated asymmetric, multireflector and multifeed designs in recent years.